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tained and noting accuracy of the individual measure­
ments, we arrive at a value of k= —162±16. 

Thus, almost within the known experimental errors of 
the various measurements, the dynamic nuclear polar­
ization of ANI can be computed from the modified 
Bloch equation [Eq. (1)] with T\— 2^2=50 nsec and 
the Solomon relation [Eq. (6)] with £ = — 162 over a 
wide range of fields and under resonant and nonresonant 
conditions. 

Some unexplained behavior was noted in an ANI 
sample which had deteriorated over a period of time. 
The time constant for the establishment of the steady-
state dynamic nuclear polarization varied markedly 
with HTi and was, in addition, much longer than T\ for 
the proton spin system. I t has been reported,12 without 
knowledge of the sample deterioration, that this system 
did not respond according to both Eqs. (1) and (6), but 
this has now been attributed to sample deterioration. 

One of the other solutions on which the low-field 
dynamic nuclear polarization measurements were made 
was a free-radical derived from crude oil, which was 
studied by Poindexter.11 This particular radical is not 
exchange-narrowed, and its linewidth is hyperfine 

12 R. J. S. Brown and Don D. Thompson, Bull. Am. Phys. Soc. 
8, 620 (1963). 

INTRODUCTION 

MAGNESIUM fluoride and zinc fluoride are 
optically transparent insulators which crystallize 

with the rutile structure. This structure has space 
group P^/mnm and point group D^h. A group character 
analysis shows that these materials should exhibit three 
doubly degenerate infrared active modes with the 
electric vector perpendicular to the c axis and one 
nondegenerate infrared active mode with the electric 
vector parallel to the c axis.1 At the present time the 
frequencies of these modes have not been established. 
A recent report by Hunt et al. describes reflection 

1 P. S. Narayanan, J. Indian Acad. Sci. 32 A, 279 (1950). 

broadened. For it, T{> r2z=10 nsec. Large signals were 
obtained from this solution with #o=0 .5 G as well. 

A check was made of the effect of direction of the rf 
field. The coils producing HTf were turned parallel to 
the dc field Ho. The ANI solution yielded absolutely no 
detectable "parallel" signal under conditions where the 
perpendicular fields gave a signal-to-noise ratio of nearly 
50. This was expected from the MBE. However, 
Poindexter's radical solution yielded a "parallel" signal 
approximately one-third as large as the "perpendicu­
lar." We believe that this is due to the existence of 
unresolved hyperfine states in the radical, which would 
permit electron absorption between W F = 0 components, 
where mp is the total electron-plus-nucleus spin mag­
netic quantum number. These transitions are known to 
have parallel transition probabilities in weak dc fields. 

We believe this transient dynamic nuclear polariza­
tion technique to be a very useful way to study electron 
relaxation behavior of solutions. First, large values of 
HT{ may be obtained at these low frequencies with 
conventional amateur transmitters; and second, the 
transient method avoids the troublesome rf heating 
problems encountered in continuous wave experiments. 
The rf is applied for only about 1 sec to fully polarize the 
nuclei. 

experiments done on polycrystalline MgF2.2 Since 
reflectivity is a nonlinear function of the dielectric 
constant, analysis of average reflectivity does not yield 
an average dielectric constant for noncubic crystals. 
Thus the analysis carried out by Hunt et al. yields some 
incorrect frequencies and mode symmetries. Recent 
experiments performed by Johnson et al. on nickel- and 
cobalt-doped MgF2

3*4 and cobalt-doped Z11F2 have 

2 G. R. Hunt, C. H. Perry, and J. Ferguson, Phys. Rev. 134, 
A688 (1964). 

3 L. F. Johnson, R. E. Dietz, and H. J. Guggenheim, Phys. 
Rev. Letters 11, 318 (1963). 

4 L. F. Johnson, R. E. Dietz, and H. J. Guggenheim (to be 
published). 
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Transverse and Longitudinal Optic Mode Study in MgF2 and ZnF2 
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Infrared reflectivity measurements have been made on single-crystal MgF2 and ZnF2 in the wavelength 
range 1 to 140 /x. An analysis of the data using Kramers-Kronig analysis and classical dispersion theory gives 
the transverse optic mode frequencies, strengths, and linewidths. Huang's macroscopic dielectric theory is 
extended to the case of several modes to study the behavior of the longitudinal Optic modes in these fluorides. 
A generalized Lyddane-Sachs-Teller relation and some additional sum rules are derived for the case of many 
modes when damping is present. I t is shown that the longitudinal mode frequencies are easily obtainable 
from the reflectivity data analysis. The four longitudinal optic mode frequencies for MgF2 and ZnF2 are 
presented. 
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shown that phonon-terminated laser action is possible. 
In MgF2:Ni the characteristic phonon frequencies are 
340 cm-1. In ZnF2:Co there is some ambiguity in the 
assignment of the phonon energy, the most likely 
assignments being in the range 380 to 540 cm"1. The 
present work is a study of the phonon properties of 
MgF2 and ZnF2 which can be detected by infrared 
techniques. Polarized reflection spectra are taken from 
suitably oriented samples to give the mode structure 
of the infrared active vibrations. Analysis of the real 
part of the dielectric constant gives the longitudinal 
optic (inactive) vibration frequencies. Huang's theory 
of the long-wave optic vibrations is extended to the 
multimode case to illustrate the longitudinal mode 
effects and to derive a general Lyddane-Sachs-Teller 
relation in the case of many modes with velocity-
dependent damping. 

EXPERIMENTAL 

Two single-crystal samples of MgF2 were oriented 
by x-ray then cut and polished by usual metallographic 
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FIG. 1. Reflectivity of MgF2 for the electric vector of the 
infrared beam perpendicular to the c axis. The solid curve is the 
best fit obtained using classical oscillator dispersion theory. The 
solid bars show the transverse mode frequencies and strengths. 
A mode strength of 1.0 is given an ordinate of 10% reflectivity. 
The arrows give the longitudinal mode frequencies. 

techniques. One sample contained about 1% Ni and 
1% Co and had a pink-orange color. The second sample 
contained about 0.5% Ni and was optically clear. A 
small boule of ZnF2 doped with about 1% cobalt was 
oriented by using Laue x-ray photographs. A rec­
tangular sample 3.5 by 4.2 by 11.0 mm was cut from the 
boule so that the c axis was parallel to the 3.5-mm edge. 
The sample had a deep red color. All samples showed 
symmetric, clearly defined optic figures when examined 
with crossed polariods. Room temperature reflection 
spectra were taken in the range 1 to 140 /x for the 
electric vector E of the infrared beam perpendicular to 
the c axis. Conventional pile of plates polarizers were 
used.5 In the E||^-axis configuration all samples had 
somewhat smaller surface areas, and measurements 
could be carried out only to about 45 n because of the 
limited energy available. In all experiments the angle of 
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FIG. 2. Reflectivity of MgF2 for E parallel to the c axis. The 
solid curve is given by the classical oscillator dispersion theory 
with one strong mode and one weak (forbidden) mode. 

incidence was near 15°. For both materials the wave­
length range was sufficient to cover completely the 
restrahlen band structure which was found. The types of 
spectrometers and the measurement techniques have 
been described previously.5,6 The measured reflectivities 
are shown by the points in Figs. 1-4. For MgF2 where 
two samples were studied, no features of the spectrum 
could be associated with the nickel and cobalt doping. 

DISCUSSION 

It is useful when presenting infrared lattice vibration 
data to characterize the modes by their strengths, 
frequencies and linewidths. This is most easily done 
using the classical oscillator dispersion theory where 
these parameters appear explicitly and can be deter­
mined by a curve-fitting procedure. In applying the 
dispersion theory to tetragonal crystals, it is assumed 
that the dielectric behavior of the crystal can be 
described by two dielectric functions, one for El. c 
axis and one for E|| c axis. The parameters entering 
these functions are a strength, frequency, and linewidth 
for each mode and an asymptotic value for the dielectric 
constant at high frequencies. Values for the parameters 
are chosen so that the dielectric functions correctly 
predict the measured infrared reflectivity. The fitting 
technique has been discussed extensively in the liter-
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FIG. 3. Reflectivity of ZnF2 for E perpendicular to the c axis. The 
solid curve is given by the classical oscillator dispersion theory. 
Transverse and longitudinal phonon modes are indicated by 
vertical bars and arrows. 

5 W. G. Spitzer and D. A. Kleinman, Phys. Rev. 121, 1324 
(1961). « A. S. Barker, Jr., Phys. Rev. 132, 1474 (1963). 
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TABLE I. Infrared phonon parameters for MgF2 and ZnF2. 

Limiting 
Frequency Wavelength Strength Linewidth dielectric 

(cm-1) (/*) Sj yj/<aj constants 

MgF2 E±_ c axis (symmetry type Eu) 
247 40.6 2.22 0.014 €„ = 1.9 
410 24.4 0.19 0.033 e0 = 5.4 
450 22.2 1.14 ^ 0.058 
303 33.0 (longitudinal mode)0 

415 24.1 (longitudinal mode) 
617 16.2 (longitudinal mode) 

MgF2 E\\ c axis (symmetry type A2u) 
399 25.0 2.7 0.048 €w = 1.9 
556a 18.0 0.01 0.08 c0 = 4.6 
625 16.0 (longitudinal mode) 

ZnF2 E\_ c axis (symmetry type Eu) 
173 57.8 4.0 0.035 6̂  = 2.1 
244 41.0 0.24 0.037 e0 = 7.5 
380 26.3 1.13 0.088 
227 44.1 (longitudinal mode) 
264 37.9 (longitudinal mode) 
498 20.1 (longitudinal mode) 

ZnF2 E\\ c axis (symmetry type A2u) 
294 34.0 4.6 0.092 e«/- 2.6b 

488 20.5 (longitudinal mode) e0 = 7.2 

a Weak forbidden mode. 
b The high-frequency reflectivity did not approach a constant value 

causing about 10% uncertainty for e^. 
0 The effective charges and damping coefficients for the longitudinal vi­

brations can be obtained by transforming to new longitudinal mode ampli­
tudes Wj' which diagonalize the force constant matrix for longitudinal mo­
tions. These longitudinal charges may be of interest since they determine 
the polaron coupling constants. 

ature.5,7 The solid curves in Figs. 1-4 show the fits that 
have been obtained with the dispersion theory. The 
corresponding mode parameters are given in Table I. 
In addition to the infrared active phonon frequencies 
(which correspond to transverse optic vibrations), the 
longitudinal optic phonon frequencies may also be 
obtained from the dispersion theory. Before discussing 
the longitudinal optic mode frequencies, it seems 
desirable to present a simple theory to illustrate the 
behavior and significance of the longitudinal vibrations. 

MACROSCOPIC LATTICE VIBRATION MODEL 

Huang has given a macroscopic model for the 
dielectric behavior of a crystal with one infrared active 

^̂  h-
z 
111 

o 
rr: 
in 
CL 

>-H 

IV
 

\-o 111 
_J 
UL 
UJ 
(H 

»00[ 

8 0 

6 0 

4 0 

?0 

Zn F2 

E I I C - A X I 5 
T = 3 0 0 ° K 

T 

SCP^CD^P £*-«& 

K 
• * ^ 

5 10 15 20 25 30 35 40 45 
WAVELENGTH (MICRONS) 

FIG. 4. Reflectivity of ZnF2 for E parallel to the c axis. The solid 
curve is given by classical oscillator dispersion theory. 

7 W. G. Spitzer, D. Kleinman, and D. Walsh, Phys. Rev. 113, 
127 (1959). 

mode.8 He has shown that this model can arise from the 
microscopic equation of motion of the ions in an NaCl-
type lattice including electronic polarizability and 
internal electric field effects. Since the effective charges, 
electronic polarizabilities, and local fields are not known 
for most noncubic crystals, we will start in the present 
work with simple macroscopic equations extended to 
several modes. Taking Wj to be the vibration amplitude 
of the j t h optic mode,9 we write 

TFi+coiWi+TiTFi-ZiE, 

Wr2+o)sBWr2+72T*r2=ZaE, • • •, (1) 

Wn+0>n2Wn+VnWn = ZnE. 

The co/, Yy, and Zy are the restoring force, damping 
coefficient, and effective charge coefficients respectively 
of the yth mode. The damping terms are of the usual 
velocity-dependent type introduced in a rather ad hoc 
manner for simplicity.10 I t must be emphasized that the 
restoring force and effective charge coefficients are not 
directly related to the microscopic forces and charges 
because of local field effects. E is the macroscopic 
electric field in the crystal. We take the polarization of 
the crystal to be 

P=alW1+a2W2+ • • • +anWn+aJ2. (2) 

Here also, local field effects prevent identification of the 
aj with the effective charge per unit volume.11 a^ 
describes the very high-frequency behavior due to 
electronic effects. At very high frequencies the ions can 
no longer follow the motion so W3 = 0 leaving the 
dielectric behavior completely determined by a^. We 
restrict ourselves to plane waves whose wave vector 
and polarization vector lie along principal crystal 
directions allowing scalar equations to be written. For 
tetragonal crystals, therefore, we have two sets of 

8 M. Born, and K. Huang, Dynamical Theory of Crystal Lattices 
(Clarendon Press, Oxford, England, 1954), Sec. 8. 

9 We have included the square root of the appropriate reduced 
mass and of the unit cell volume in the definition of W to yield 
equations where mass does not appear explicitly. In these equa­
tions the damping and charge coefficients have dimensions of 
frequency. 

10 In a real crystal, y must be frequency-dependent and have 
both real and imaginary parts which obey the Kramers-Kronig 
relation [M. Lax, Phys. Chem. Solids 25, 487 (1964)]. Probably 
the most important deviation from the constant y chosen here 
occurs at high frequencies where the losses in a real crystal fall 
off much more rapidly than is consistent with constant y. Such 
rapid falloff is usually not detectable in reflection experiments 
because it occurs in a frequency region where the real part of the 
dielectric constant rather than the imaginary part dominates the 
reflectivity equations. We may reproduce the essential features of 
this fall off by using Re (7) = const up to some frequency coo well 
above the optic mode resonance. We then attach a truncating 
function Re(x)^ l /w or exp(—co/coo) for frequencies above wo. 
The result is that to a good approximation we can still use a real 
and constant y in all our equations for frequencies below coo; 
however, the restoring force parameter cor2 now contains a fre­
quency-independent contribution arising from the imaginary 
part of 7. 

11 We may show that aj = Zj if we assume a fairly simple and 
obvious form for the free energy density in the crystal. See 
Appendix 5 of Ref. 8. 
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tofYjZjaj coefficients, one set for vibrations along the 
a axis and one for vibrations along the c axis. We try 
plane-wave solutions 

P,EiWu^.-,W^ei^^kxK (3) 

On substitution of these solutions into Eq. (1), the 
mode amplitudes Wj are obtained. Substitituion of the 
Wj into Eq. (2) gives 

[ ajZj 1 

Z —+«oo E . (4) 
i co/—co2+«o7y J 

The dielectric constant is immediately obtained as 

e=l+4«rP/E 

SjOOj2 

= 6 M + Z — , (5) 
j o)j2—o)2Jtio)yj 

i.e., the usual classical oscillator dispersion equation. 
€00=1+47^ is introduced to describe the high-fre­
quency asymptotic behavior of the dielectric constant. 
In addition we have introduced Sy=47nayZy/co/ as a 
convenient dimensionless mode strength. In terms of 
this mode strength, the low-frequency dielectric con­
stant e(0) is given by 

e(0) = e M + E 5 i . (6) 
j 

The dielectric constant e merely gives the ratio of 
displacement D to electric field E for plane waves of 
arbitrary 0) and k. k or co or both may be complex since 
up to this point we have not restricted ourselves to 
free vibrations. By a suitable arrangement of charge 
and current sources, waves of arbitrary k and 00 may of 
course be excited. We now solve for the free vibrations 
by insisting 

d ivZ>=0=div# , 

C u r l £ = - i 7 A , 

Cm\H=D/c, (7) 

£ > = £ + 4 T T P , 

that is, we remove all arbitrary sources (free currents 
and charge) from the medium. The first of the above 
equations divD=edivE=0 has two roots. If d ivE=0 , 
then the wave vector k is perpendicular to E (trans­
verse modes) ; if e = 0 then divE need not be zero and k 
turns out to be parallel to E (longitudinal modes) for 
the principal crystal directions being considered. 

LONGITUDINAL SOLUTIONS 

We start by studying the roots of € = 0 in the case of 
n modes. I t is convenient to multiply through Eq. (5) 
by all the resonant denominators and consider the 

roots of the following form: 
n 

6 I I (<*>/—cx>2+io)jj) 

= C 0 i W " ' 'O0n2(Sl+S2 h -5 'n+€oo)+ ico ( - • • ) 

_ C 0 2( . . . ) _ ^ 3 ( . . . ) + w 4 ( . . . )+io>6(. • •) 

+ (-l)»a>*»(€co). ( 8 ) 

The brackets containing dots represent different terms 
containing complicated combinations of 5y, coy, 7y, 
and €00. 

Since the right side of Eq. (8) is a polynomial of 
degree 2n, there are 2n roots to the equation e = 0.12'13 

We will provisionally call these roots the longitudinal 
mode frequencies ccily coi2, • • -co/2n. From the form of 
the polynomial, we note that, when an is a root, so is its 
negative complex conjugate — coj*. We may write the 
polynomial in its factored form: 

€]l(^/-w2+ico7y) 
j 

= (-l)ne00(co-o)z1) (co-coz2) • • • (co-co/2n) 

= (-l)"(co2-lcoz1 |2-2icoIm(coz1))---

X(co 2 - | cozJ 2 -2^ Im(cozJ ) , (9) 

where Im stands for "imaginary part of," and we have 
chosen the coefficient (— l)neXl by inspection to give 
the correct leading term. We have also relabeled the 
roots in the third line making use of the way they 
occur in pairs and used (cai) • (—001*) — — |o>j|2. We 
obtain 2n— 1 sum rules by now equating coefficients of 
equivalent terms in Eqs. (8) and (9), The most impor­
tant of these sum rules is the Lyddane-Sachs-Teller 
relation which comes from equating the constant term 
in each polynomial. Equating the constant terms on 
the right-hand sides of Eqs. (8) and (9) we obtain 

| w h | 2 | c O f e | 2 | c O Z 8 | 2 , • • \">ln\2 ^ ( 0 ) 

— = . (10) 

This is the Lyddane-Sachs-Teller relation. I t is interest­
ing to note that for our model which includes damping, 
this Lyddane-Sachs-Teller relation connects the ab­
solute value of the longitudinal mode frequencies with 
the force constant parameters ojy. In the case of no 
damping, the a>j will actually be the transverse mode 
frequencies, and the on, will be real allowing the absolute 
value signs to be dropped. Equation (10) then becomes 
identical in form of relations which have been derived 
b> Cochran14 and Kurosawa15 from quite different 
considerations based on microscopic models. 

12 The resonant factors do not introduce any roots in addition 
to those of e. 

13 The appearance of 2n roots in an n mode problem simply 
reflects a freedom in phase for each solution allowing us to specify 
both position and velocity as initial conditions. 

14 W. Cochran, Z. Krist. 112, 465 (1959). 
15 T. Kurosawa, J. Phys. Soc. Japan 16, 1298 (1961). 
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The coefficient of the co2w term gives no sum rule 
since this term was adjusted to scale the polynomial. 
The coefficient of the co2™-1 term gives a sum rule on 
the 7/s. 

7i+72H h7n = 2(Im(wll)+Im(a>j2)H rTm(cojJ). 

The coefficient of the co2n~2 term gives a sum rule on 
the frequency weighted mode strengths co/Sy. The 
importance of these weighted strengths is their direct 
relation to the effective charge z3- [see discussion 
immediately below Eq. (5)]. Equating coefficients of 
the co2n_2 term we obtain 

£«i*s,=£(|««, | • - « / ) . 
i i 

This relation has been derived by Kurosawa15 in the 
case of no damping. The remaining sum rules involve 
less useful combinations of the mode parameters and 
will not be given here. 

For the case of one mode the sum rules are 

7 i = 2 I m ( w j l ) , 
and 

\ch\
2_S1+eQO__e(0) 

These relations are easily obtainable directly from the 
longitudinal root which can be written explicitly 

/ /S i+cA 7 1 V 2 »7i 

"'-<"'(—)-T) +T-
To complete the discussion of the longitudinal solutions, 
we insert €=0 into Eq. (7) and find H=0, and that E, 
P, W, and k must all be parallel. The solutions are thus 
longitudinal modes with the frequencies given above 
and no k dependence (flat dispersion curves). 

TRANSVERSE SOLUTIONS 

For €5*0 Eqs. (7) permit transverse solutions with 
the k, E, and H vectors forming a right-handed system. 
The equations give the dispersion relation when E and 
H are eliminated between the two of Maxwell's equa­
tions involving the Curl. This relation is 

k2c2/a>2=6, (11) 

where e is given by Eq. (5). If the square root of € is 
defined as the complex index of refraction, then 
Eq. (10) states the familiar result that the phase 
velocity of the transverse waves is determined by the 
index of refraction in the customary way. There are 
nontrivial wave vector dependences for these transverse 
modes. We will briefly examine the dispersion curve of 
the transverse modes for real frequencies since this gives 
a picture of the wave behavior in a dielectric during the 
usual infrared experiment. Figure 5 illustrates the 
transverse solutions for the three classical modes which 
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FIG. 5. Dispersion curves for the transverse modes in MgF2 with 
E perpendicular to the c axis and for real frequency. 

fit the o-axis dielectric behavior of MgF2. The curves 
show the usual regions of photon-like behavior at very 
low and very high frequencies [with slopes determined 
by e(0) and e ,̂ respectively] continuously joining 
horizontal phonon-like curves. The quanta associated 
with such mixed phonon-photon curves are sometimes 
called polaritons. 

We define the transverse phonon frequencies as 
wtj, the poles of the dielectric constant given by 

««, = db (co/~7i/42)1/2+%/2. (12) 

We note, however, that transverse vibration modes 
exist at all frequencies. Born and Huang have given an 
excellent discussion of the dispersion curves in the 
case of a single undamped mode.8 They point out that 
for such phonon dispersion curves, as the wave vector k 
increases, energy is carried more and more predom­
inantly by the elastic rather than the electromagnetic 
part of the field. The definition chosen above [Eq. 
(12)] for the transverse optic phonon mode frequency 
corresponds to the limit of large k, where the ratio of 
mechanical to electric field amplitude has become 
infinite. As mentioned earlier, we note that the phonon 
frequency is shifted from the restoring force value coy 
when there is damping present. The limiting behavior 
where the dispersion curves approach the phonon 
frequency is only partially shown in Fig. 5 since this 
figure is drawn for real frequencies. 

EXPERIMENTAL DETERMINATION OF 
FREQUENCIES 

For discussing most infrared experiments we may 
restrict the frequency to be real. If the dielectric 
constant function for real frequencies can be deter­
mined (for instance by fitting the reflectivity), then 
the constants coy, y3-, S3-, and €<*, can be determined and 
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FIG. 6. Real part of e for MgF2 (E±c axis). The dashed curve 
results when the damping of the two higher frequency modes is 
reduced to zero. This curve is used to determine the longitudinal 
phonon frequencies. 

any of the above complex frequencies can be evaluated. 
Roughly speaking, for thick samples with well-spaced 
lightly damped modes, the high- and low-frequency 
edges of the restrahlen band fall at the real part of the 
longitudinal and transverse phonon frequencies. In 
transmission experiments with thin samples, absorption 
lines are obtained at both the longitudinal and trans­
verse phonon frequencies if non-normal incidence is 
used.16 Figures 1 to 4 show the transverse and longi­
tudinal mode frequencies in MgF2 and ZnF2 along with 
the reflectivity for comparison. These frequencies are 
determined as follows. In the present work, y3- is at 
most 9% of o)j, and reflectivity fitting can be carried out 
to an accuracy of about 1% in frequency. Therefore, 
terms like jj/*2 can be neglected compared with co/ in 
most of the formulas. The procedure has been adopted 
therefore of quoting the parameters o)j which produced 
the best reflectivity fit, as the transverse phonon 
frequencies. Next the zeros of e' (the real part of e) along 
the real frequency axis are determined. Alternate zeros 
are discarded since along the real frequency axis ef has 
extra zeros from a factor (a>/—co2) in the numerator. 
The remaining zeros are adopted as the longitudinal 
phonon frequencies. If e' does not have zeros (for real 
frequency) corresponding to some of the longitudinal 
modes, the damping can be set equal to zero in Eq. (5) 
and the real part of e can be recalculated. Zeros now 
appear which approximate the real part of the longi­
tudinal phonon frequencies within the accuracies stated 
above. Figure 6 shows the real part of € for MgF2 and 
the changes that result when the damping of the two 
highest frequency modes is reduced to zero. We note 
that two new zeros appear and that the other zeros are 
not shifted. According to our procedure, the lower 
frequency zero of this pair is to be discarded and the 
higher frequency zero designated o)i2. Table I gives all 

" D. W. Berreman, Phys. Rev. 130, 2193 (1963). 

the optic mode phonon frequencies for MgF2 and ZnF2 
deduced in the manner just described. Comparison of 
Table I with the work of Johnson et al. shows that none 
of the phonons observed here could be associated with 
the laser action by a one-phonon process. Since the 
MgF2 fluorescence spectrum1 probably reflects a one-
phonon density of states, we might look for compari­
sons with the forbidden mode seen in MgF2 at 556 
cm"1 in the present work. It appears likely that this 
forbidden mode is a sum band involving phonons seen 
in fluorescence at about 6164 and 6300 cm-1, i.e., 
phonons with frequencies 338 and 200 cm-1. If the optic 
branches are fairly flat across the Brillouin zone in 
MgF2, the 556 cm-1 forbidden mode might also be due 
to the 410 or 415 cm-1 optic modes combining with the 
155-cm-1 phonons seen in fluorescence. 

The low-frequency dielectric constant e(0) may be 
predicted from the mode strengths and the high-
frequency dielectric constant obtained in the present 
study. Table I gives e(0) for the electric vector parallel 
and perpendicular to the c axis for MgF2 and ZnF2. 

CONCLUSION 

The eight infrared mode frequencies in MgF2 and in 
ZnF2 have been evaluated from reflectivity data. Four of 
these modes are the usual "infrared active" or trans­
verse phonon modes and four are the associated longi­
tudinal phonon modes split off by the Coulomb interac­
tion. Though the transverse modes usually determine 
absorption (see, however, Ref. 16), the longitudinal 
modes determine important features of the dielectric 
constant and are easily obtained from an analysis of 
reflectivity measurements. A general Lyddane-Sachs-
Teller relation has been derived which reduces to the 
form given by others in the case of zero damping. 
Additional "sum rules" connecting mode parameters 
and the phonon frequencies are derived in a systematic 
way. The low- and high-frequency dielectric constants 
are deduced for the principle directions in MgF2 and 
ZnF2. It is to be emphasized that in infrared experi­
ments where there is appreciable damping any 
frequency associated with a physical effect must be 
defined quite carefully relative to the theory used to 
describe the dispersion. A simple example is provided by 
the classical oscillator with one mode. While the 
imaginary part of the dielectric constant e" is often 
plotted to show the mode structure, it is known that 
the maximum in e" does not occur at the frequency 
coi. The maximum of the real part of the conductivity 
however, occurs exactly at «i for any value of damping. 
Thus the conductivity curve may be used to determine 
cai directly. The point being stressed here is that once 
o?i is determined it must be recognized as only a 
parameter of the theory, not as a phonon frequency, if 
accuracies of order yi/coi are important. 


